Introduction to CBC and Blood Smear Interpretation

Thanyaphong Na Nakorn, MD, PhD Division of Hematology Department of Medicine Chulalongkorn University

- The most common test used in clinical medicine
- Determine type and severity of blood cell abnormalities
- Nowadays, CBC is fully automated and highly reproducible.
- Correct interpretation of automated CBC can reduce rate of unnecessary blood smear examination
- Provide useful information for provisional diagnosis of RBC and WBC diseases

Component of automated CBC

- Blood count basic parameters: Hb, Hct, RBC, WBC, platlet.
- Red cell indices: MCV, MCH, MCHC, RDW
- WBC differentials
- Cytogram or Scattergram
- Reticulocyte count

Basic principles of automated blood cell analyzer

- Electrical impedance: Coulter Counter , Cell-Dyn®
- Optical impedance and light scatter:

Technicon-H series

 VCS (volume, conductivity, light scatter) technology Beckman-Coulter VCS, MAXM, STKS

Coulter Technology

• Cell count and size can be measured by electrical impedance

Instrument	Methodology features	
Coulter STKS	Impedance, conductivity, laser technology	
Coulter GEN-S	Impedance, flow cytometry, conductivity, laser light scatter (reticulocyte analysis)	
Sysmex SE-9000	Direct current (resistance to cell volume); radio-frequency (cell density size)	
Cobas Argos 5-diff (Roche)	Impedance, light absorption (halogen light source)	
Technicon H-3 (Bayer)	Cytochemistry, flow technology (reticulocyte analysis)	
Advia 120 (Bayer)	Cytochemistry, flow technology (reticulocyte analysis)	
Cell Dyn 4000 (Abbott)	Impedance, laser light scatter	

WBC: Six-part differentials

- > Lymphocyte
- > Monocyte
- > Eosinophil
- Basophil
- Large Unstained Cell (LUC)

Peroxidase channel

Platelet parameters

- Platelet count
- Mean Platelet Volume (MPV)
- Platelet Distribution Width (PDW)
- Plateletcrit (Pct)

Reticulocyte count

- Reticulocyte = non-nucleated RBC with polyribosomal RNA as stained by supravital stain (new methylene blue or brilliant cresyl blue)
- Polychromasia underestimates reticulocytes
- Three methods of reticulocyte enumeration
 - Manual count on slide per 1,000 RBC
 - Automated CBC with reticulocyte counter (Coulter VCS, Cell-Dyne 4000, Technicon-H3)
 - Flow cytometry with fluorescent dyes

What is your diagnosis?

WBC	5.00	х10³/μL
RBC	3.56	x10⁰/μL
Hb	6.0	g/dL
HCT	21.0	%
MCV	59.0	fL
MCH	17.0	pg
MCHC	28.8	g/dL
RDW	19.4	%
HDW	4.02	g/dL
PLT	427	x10³/μL

Differential diagnosis of anemia using MCV and RDW

	Low MCV	Normal MCV	High MCV
RDW <15	Thalassemia trait Heterozygous HbE, HbC, etc. Anemia of chronic disease (ACD)	ACD Heterozygous HbS, HbCS, HbE, etc. Hereditary spherocytosis Acute hemorrhage	Aplastic anemia MDS Myeloma Liver disease Hyperthyroidism
RDW >15	Iron deficiency anemia Thalassemia intermedia Sideroblastic anemia Severe ACD RBC fragmentation	Early or combined nutritional deficiency Myelodysplasia Myelophthisis Sickle cell anemia or Homozygous HbCS	B12 deficiency Folate deficiency AIHA Drugs: HU, ARV, AZA, etc.

Factors known to cause spurious laboratory results in hematology analyzers.

Parameter	Spuriously increased	Spuriously decreased
RBCs	WBC >50 000/mm ³	Clotting
НЬ	hyperlipidemia, hyperbilirubinemia	Clotting
MCV	Cold agglutinins, hyperglycemia, WBC >50 000/mm³	Cryoglobulins
мснс	Hyperlipidemia, cold agglutinins	WBC >50 000/mm ³
RDW	Post transfusion	
WBCs	Nucleated red cells, platelet clumps, unlysed red cells, cryoglobulins	Clotting
Platelets	WBC fragmentation, severe microcytosis, cryoglobulins	Satellitism, clumping

Basic Principles for Blood Smear Interpretation

- Assess quality of smears
 Specimen preparation & staining
- Estimate cell numbers
 - RBC: evenly dispersed with minimal intercellular space
 - WBC: 10-20/LPF
 - Platelets: 7-20/OF
- Determine predominant cell populations
- Carefully examine cellular morphology

RBC disorders

- Hypochromic microcytic anemia
 - Iron deficiency anemia
 - Thalassemia and hemoglobinopathy
- Macrocytic anemia
 - Megaloblastic anemia
 - Non-megaloblastic macrocytic anemia
- Hemolytic anemia
 - Immune hemolytic anemia: AIHA, DHTR
 - Microangiopathic hemolytic anemia (MAHA)
 - Red cell enzymopathies: G-6-PD deficiency
 - RBC membrane defects: spherocytosis, ovalocytosis, elliptocytosis, stomatocytosis
- RBC inclusion bodies and parasites

WBC disorders

- Leukopenia
 - with absolute neutropenia: bone marrow failure, agranulocytosis
 - with atypical lymphocytes: viral infection, chronic lymphoproliferative disorders
 - with immature myeloid cells: acute leukemia, MDS or myelopthisis
- Leukocytosis
 - Reactive leukocytosis: leukemoid reaction
 - Acute leukemia: AML vs. ALL
 - Chronic myeloproliferative disorders
 - Chronic lymphoproliferative disorders
- Leukoerythroblastosis

Platelet disorders

- Quantitative disorders
 - Isolated thrombocytopenia: Immune vs. non-immune
 - Thrombocytopenia associated with other hematologic abnormalities
 - Thrombocytosis
- Qualitative disorders
 - Giant platelets (megathrombocytes)
 - Platelet inclusion or granule abnormality
 - Bizarre in shape and size
 - Megakaryocytes or megakaryoblasts

<image><page-footer>

